2,496 research outputs found

    A Dodecalogue of Basic Didactics from Applications of Abstract Differential Geometry to Quantum Gravity

    Full text link
    We summarize the twelve most important in our view novel concepts that have arisen, based on results that have been obtained, from various applications of Abstract Differential Geometry (ADG) to Quantum Gravity (QG). The present document may be used as a concise, yet informal, discursive and peripatetic conceptual guide-cum-terminological glossary to the voluminous technical research literature on the subject. In a bonus section at the end, we dwell on the significance of introducing new conceptual terminology in future QG research by means of `poetic language'Comment: 16 pages, preliminary versio

    `Iconoclastic', Categorical Quantum Gravity

    Full text link
    This is a two-part, `2-in-1' paper. In Part I, the introductory talk at `Glafka--2004: Iconoclastic Approaches to Quantum Gravity' international theoretical physics conference is presented in paper form (without references). In Part II, the more technical talk, originally titled ``Abstract Differential Geometric Excursion to Classical and Quantum Gravity'', is presented in paper form (with citations). The two parts are closely entwined, as Part I makes general motivating remarks for Part II.Comment: 34 pages, in paper form 2 talks given at ``Glafka--2004: Iconoclastic Approaches to Quantum Gravity'' international theoretical physics conference, Athens, Greece (summer 2004

    `Third' Quantization of Vacuum Einstein Gravity and Free Yang-Mills Theories

    Get PDF
    Based on the algebraico-categorical (:sheaf-theoretic and sheaf cohomological) conceptual and technical machinery of Abstract Differential Geometry, a new, genuinely background spacetime manifold independent, field quantization scenario for vacuum Einstein gravity and free Yang-Mills theories is introduced. The scheme is coined `third quantization' and, although it formally appears to follow a canonical route, it is fully covariant, because it is an expressly functorial `procedure'. Various current and future Quantum Gravity research issues are discussed under the light of 3rd-quantization. A postscript gives a brief account of this author's personal encounters with Rafael Sorkin and his work.Comment: 43 pages; latest version contributed to a fest-volume celebrating Rafael Sorkin's 60th birthday (Erratum: in earlier versions I had wrongly written that the Editor for this volume is Daniele Oriti, with CUP as publisher. I apologize for the mistake.

    Algebraic description of spacetime foam

    Get PDF
    A mathematical formalism for treating spacetime topology as a quantum observable is provided. We describe spacetime foam entirely in algebraic terms. To implement the correspondence principle we express the classical spacetime manifold of general relativity and the commutative coordinates of its events by means of appropriate limit constructions.Comment: 34 pages, LaTeX2e, the section concerning classical spacetimes in the limit essentially correcte

    Differential Geometry of Group Lattices

    Full text link
    In a series of publications we developed "differential geometry" on discrete sets based on concepts of noncommutative geometry. In particular, it turned out that first order differential calculi (over the algebra of functions) on a discrete set are in bijective correspondence with digraph structures where the vertices are given by the elements of the set. A particular class of digraphs are Cayley graphs, also known as group lattices. They are determined by a discrete group G and a finite subset S. There is a distinguished subclass of "bicovariant" Cayley graphs with the property that ad(S)S is contained in S. We explore the properties of differential calculi which arise from Cayley graphs via the above correspondence. The first order calculi extend to higher orders and then allow to introduce further differential geometric structures. Furthermore, we explore the properties of "discrete" vector fields which describe deterministic flows on group lattices. A Lie derivative with respect to a discrete vector field and an inner product with forms is defined. The Lie-Cartan identity then holds on all forms for a certain subclass of discrete vector fields. We develop elements of gauge theory and construct an analogue of the lattice gauge theory (Yang-Mills) action on an arbitrary group lattice. Also linear connections are considered and a simple geometric interpretation of the torsion is established. By taking a quotient with respect to some subgroup of the discrete group, generalized differential calculi associated with so-called Schreier diagrams are obtained.Comment: 51 pages, 11 figure
    • …
    corecore